Monitoring of Bridge Abutment Walls at SR 33 Over East State St. (Athens, OH)

Teruhisa Masada ORITE, Ohio University

for the Ohio Department of Transportation Office of Research and Development

and the U.S. Department of Transportation Federal Highway Administration

State Job Number 505953(0)

Final Report FHWA/OH-2007/02 March 2007

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA/OH-2007/02		
4. Title and Subtitle		5. Report Date
Monitoring of Bridge Abutm	ent Walls at SR 33 Over East	March 2007
State St. (Athens, OH)		
7. Author(s)		6. Performing Organization Code
Teruhisa Masada		
		8. Performing Organization Report No.
9. Performing Organization Name and	Address	10. Work Unit No. (TRAIS)
ORITE		
141 Stocker Center		
Ohio University		11. Contract or Grant No.
Athons OH 45701-2070		State Job No. 505953 (0)
Atticus OII 45701-2979	tross	<u> </u>
OL: Day and a former of the second		12 Type of Penert and Period Covered
Onio Department of Transpo	rtation	
Office of Research and Devel	opment	Final Report
1980 West Broad St.		14. Sponsoring Agency Code
Columbus OH 43223		
15. Supplementary Notes		
Prenared in cooperation with	the U.S. Department of Transpo	rtation, Federal Highway

Administration

16. Abstract

District 10 personnel of Ohio DOT recently noticed signs of deterioration (such as backfill infiltration, wall cracking) on the bridge abutment walls existing under the S.R. 33 bridge over East State St. in Athens, Ohio. A research project was conducted by the ORITE researcher to monitor possible rotational movements of the abutment walls for two years, which included the period before, during, and after the rehabilitation work. A tilt-meter station was established in the lower section of each of the ten abutment wall panels. Additional measurements were also taken manually at the top of the abutment walls to detect wall movements. Both the tilt-meter and manual measurements were taken monthly from December 2004 to November 2006. Visual inspections were conducted at the project site a few times during the project. In addition, cone penetration test (CPT) sounding was performed in October 2004 to gather high-resolution subsurface data of the highway embankment soil behind the abutment walls existing on the north side of East State St.

The tilt-meter and manual measurements collected during the project showed that all the abutment walls remained stable during the two-year period. Initial visual inspection revealed that each panel had at least one vertical crack running through the wall. Subsequent visual inspection detected no new cracks on the abutment walls. The CPT sounding data indicated that wet and soft soil layers were present in some parts of the embankment fill. Based on the findings of the project, implementation plans were presented to address rehabilitation work and future monitoring issues.

				0
17. Key Words		18. Distribu	tion Statement	
highway bridge, abutment wall, f	field performance,	No res	trictions. T	his document is
monitoring, instrumentation, rotat	tion, CPT, visual	availabl	e to the pul	blic through the
inspection, rehabilitation.		National	Technical Inf	formation Service,
-		Springfi	eld, Virginia 2	2161.
19. Security Classif. (of this report)	20. Security Classif. (of the	nis page)	21. No. of Pages	22. Price
Unclassified	Unclassified		56	

FORM DOT F 100.7 (8-72) Reproduction of complete pages authorized

APPROXIMATE CONVERSIONS TO SI UNITS ymbol When You Know Multiply By To Find Si In inches 25.4 millimetree Si millimetree Si In inches 25.4 millimetree Si millimetree Si In inches 25.4 millimetree Si Si Si Si In inches 0.305 metree 0.305 metree Si	mbol Symbol		CHO I		
ymbol When You Know Multiply By To Find Si In Inches 2.5.4 millimetres In inches 2.5.4 millimetres Multiply By To Find Si Multiply By 2.5.4 millimetres Multiply By 0.305 metres Multiply By 0.205 metres Multiply By 0.705 metres <th>mbol Symbol</th> <th>PROXIMATE CONVE</th> <th>RSIONS FR</th> <th>INN IS WO</th> <th>TS</th>	mbol Symbol	PROXIMATE CONVE	RSIONS FR	INN IS WO	TS
In Inches 25.4 Inilimetres In inches 25.4 millimetres In inches 25.4 millimetres In yards 0.914 metres In 0.914 metres 0.305 metres In 0.914 metres metres In AREA AREA metres In AREA Millimetres metres In square inches 645.2 millimetres In square feet 0.033 metres In value 2.59 klometres squared In value 0.028 metres In outoes 2.56 metres cubed In outoes 0.766 metres cubed In outoes 28.35 metres cubed In outoes 28.35 metres		When You Know Mu	ittiply By To	o Find Syl	mbol
In inches 25.4 millimetres If feet 0.305 metres If yards 0.914 metres If i.61 kiometres If square inches 645.2 millimetres If square inches 645.2 millimetres If square inches 645.2 millimetres If square feat 0.093 metres If square feat 0.035 metres If square feat 0.033 metres If square feat 0.033 metres If square mice 2.59 kiometres If vacres 0.405 metres If outoes 2.59 kiometres If outoes 2.50 metres If outoes 2.55 millimetre If outoes 2.55 metres <cuare< td=""> If outoes 2.55 metres<cuare< td=""> If outoes 0.028 metres<cuare< td=""> If outoes 0.765 metres<cubed< td=""> If outoes 28.35 metres<cubed< td=""></cubed<></cubed<></cuare<></cuare<></cuare<>	サイトにした必要でいたがた。一時にいたである	LEN	ЮТН		
Index 0.305 metres Indication 0.914 metres Indication 645.2 metres Indication 645.2 metres Indication 0.093 metres Indication 0.036 metres Indication 0.036 metres Indication 0.036 metres Indication 0.036 metres Indication 0.026 metres Indication 0.765 metres Indica		millimetree 0.0	039 inch	ğ	5
d yards 0.914 metres 1.61 kilometres AREA AREA AREA AREA AREA AREA AREA Area actuate inches 645.2 millimetres squared constant 645.2 millimetres squared actuals words 0.0336 metres squared actuals miles actuals miles actuals miles actuals miles actuals miles actuals for millimetres actuals for motres actuals miles actuals for motres actuals for motes actuals for 	E	metres 3.	28 feet		
In mise 1.61 Monetree AREA AREA Area Area square inches 645.2 millimetres squared square foctors 0.033 metres squared square foctors 0.405 metres squared square mises 2.59 kiometres squared metres squared 0.405 metres squared square mises 2.59 kiometres squared metres squared 3.785 millitree metres cubad 0.765 metres cubad metres grater 0.765 metres cubad metres 0.765 metres cubad metres 0.765 metres metres 0.765 metres metres 0.765 metres	E	metres 1.0	09 yard	de l	2
AREA AREA acquare inches 645.2 millimetres squared square field 0.083 metres squared square pade 0.083 metres squared acres 0.405 metres squared acres 2.59 kiometres squared metres squared acres 0.002 metres squared acres 1.50 kiometres	Ę.	kilometres 0.6	821 mile	8	Ē
curves 645.2 millimetres squared curves curves 0.093 metres squared curves 0.005 metres squared curves 0.405 metres squared curves 0.405 kiometres squared curves 0.405 kiometres squared curves 0.405 kiometres squared curves 2.59 kiometres squared curves 29.57 millithes palons 23.785 itroes cubic fleet 0.028 motres cubed fE. Volumes greater than 1000 L shall be shown in m'. MASS		AR	IEA		
4 square feet 0.083 metres squared 6 square yards 0.386 metres squared 6 square miles 0.405 metres squared 7 square miles 0.405 metres squared 8 square miles 2.59 kilometres squared 0 UOLUME VOLUME metres squared 0 alloins 3.785 ittree 1 galons 3.785 ittree 1 cubic feet 0.028 metres cubed 1 cubic feet 0.028 metres cubed 1 cubic yards 0.765 metres cubed 1 Volumes greater than 1000 L shall be shown in m'. MASS 0 anos 28.35 grams	mm² mm²	millimetres squared 0.0	0016 squ	are inches	2
# square yards 0.336 metres equared c acres 0.405 hoctares c acres 2.59 kiometres equared millithe 2.59 kiometres equared millithe 3.785 hires alons 3.785 hires alons 0.765 metres cubed P cubic yards 0.765 metres cubed 0.765 metres cubed metres greater than 1000 L shall be shown in m'. MASS	ĩ	metres squared 10	.764 squ	are feet	ł
C acres 0.405 hoctares Requare miles 2.59 kiometres squared Square miles 2.59 kiometres squared Square miles 2.59 kiometres squared Structure 29.57 millititres Square miles 3.785 fitres Square miles 0.765 metres cubed P cubic feet 0.765 metres cubed TE: Volumes greater than 1000 L shall be shown in m ⁴ . MASS	m ² ha	hectares 2.4	47 acre	80	80
VOLUME 20.57 millithes 1 galons 20.57 millithes 2 3785 free 2 0.265 metres 2 0.765 metres 1E: Volumes greater than 1000 L shall be shown in m ⁴ .	ha km² km²	kilometres squared 0.3	386 squi	are miles	Ē
Riud ounces 29.57 millithes 1 gallons 29.57 millithes 2 cubic feet 0.028 metres cubed 2 cubic feet 0.765 metres cubed 2 cubic yards 0.765 metres cubed P cubic yards 0.765 metres cubed		NOL	UME		
Third ounces 29.57 millitres galons 3.765 millitres outbic feet 0.028 metres cubed to cubic feet 0.765 metres cubed to cubic yards 0.765 metres cubed TE: Volumes greater than 1000 L shall be shown in m ¹ . MASS ounces 28.35 greater	Ę	mililitres 0.0	34 fluid	d ounces	a H
recubic feet 0.028 metres cubed cubic feet 0.028 metres cubed recubic yards 0.765 metres cubed TE: Volumes greater than 1000 L shall be shown in m ¹ . MASS ounces 28.35 greater	ے۔ ح	litres 0.2	264 galk	lons .	80
P cubic yards 0.765 motree cubed TE: Volumes greater than 1000 L shall be shown in m ¹ . MASS greater than 1000 L shall be shown in m ² .	ÈÈ	metres cubed 30.	308 cub	oic yards	ÈŻ
TE: Volumes greater than 1000 L shall be shown in m ² . MASS ounces 28.35 grams	Ê				
MASS ounces 28.35 grame		MA	SS		
ounces 28.35 grams	¤₽}	grams 0.0 kilograms 2.2	0135 oun 205 pour	ces nds	8.21
	P	megagrams 1.1	10Z 8101	rt tons (2000 b)	-
pounds 0.454 wegratine short tons (2000 b) 0.907 megagrams	.93	TEMPERAT	URE (exact)	_	
TEMPERATURE (exact)	•	Celcius 1.8 temperature	IC + 32 Fahr temp	renheit perature	÷
				. J.	
: Fahrenheit 5(F-32/9 Celcius temperature temperature	ç	-40 -20 0 20 0	3.6 120 160 40 60 80	²⁰ 23	

Monitoring of Bridge Abutment Walls at SR 33 Over East State St. (Athens, OH)

Final Report

by

Teruhisa Masada, Ph.D. (Associate Professor)

Ohio Research Institute for Transportation and the Environment (ORITE), Civil Engineering Department Russ College of Engineering and Technology, Ohio University

> E-Mail: <u>masada@bobcat.ent.ohiou.edu</u> Tel: (740) 593-2474

<u>Credit Reference</u>: Prepared in cooperation with the Ohio Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.

<u>Disclaimer Statement</u>: The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Ohio Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification or regulation.

March 2007

TABLE OF (CONTENTS	Page v
LIST OF TA	BLES	Page vi
LIST OF FIG	GURES	Page vii
CHAPTER 1	:INTRODUCTION	Page 1
CHAPTER 2	:METHODOLOGY	Page 2
2.1	Project Tasks	Page 2
2.2	Visual Inspections	Page 2
2.3	Tilt Angle Measurements	Page 2
2.4	Field Measurements at Top of Abutment Walls	Page 6
2.5	Site Visits and Project Coordination	Page 7
2.6	CPT Investigations	Page 8
CHAPTER 3	RESEARCH RESULTS	Page 13
3.1	CPT Soundings	Page 13
3.2	Field Visual Inspections	Page 17
3.3	Tilt-Meter Readings	Page 34
3.4	Measurements Taken at Top of Abutment Walls	Page 37
3.5	Additional Project Information	Page 40
CHAPTER 4	SUMMARY AND CONCLUSIONS	Page 45
4.1	Summary	Page 45
4.2	Conclusions	Page 45
4.3	Recommendations	Page 46
CHAPTER 5	:IMPLEMENTATIONS	Page 47
REFERENC	ES	Page 48

TABLE OF CONTENTS

LIST OF TABLES

Table 3.1:	Tilt-Meter Readings Taken for North Side Abutment Walls	Page 34
Table 3.2:	Tilt-Meter Readings Taken for South Side Abutment Walls	Page 35
Table 3.3:	Tilt Angles of Abutment Wall Panels	Page 35
Table 3.4:	Rotational Measurements Taken at Top of Abutment Walls	Page 38
Table 3.5:	Joint Gap Measurements Taken at Top of Abutment Walls	Page 38
Table 3.6:	Horizontal Drain Pipes Installation Plan	Page 41

LIST OF FIGURES

Figure 1.1:	Project Site Area (SR 33 over E. State St. – Athens)	Page 1
Figure 2.1:	Layout and Identifications of Abutment Wall Panels	Page 3
Figure 2.2:	Field Set-Up for Abutment Wall Tilt Measurement	Page 4
Figure 2.3:	Digi-Tilt Sensor and Readout Device	Page 4
Figure 2.4:	Reference Plate Attached to Wall Panel	Page 5
Figure 2.5:	Additional Joint Measurements Taken at Top of Walls	Page 6
Figure 2.6:	Taking Joint Measurements at Top of Abutment Wall	Page 7
Figure 2.7:	CPT Penetration	Page 8
Figure 2.8:	CPT Probe Schematics	Page 10
Figure 2.9:	Soil Behavioral Classification Chart	Page 11
Figure 3.1:	CPT Probe Pushed into Ground at Hole #1	Page 13
Figure 3.2:	Standard CPT Log for CPT Hole #1 @ Sta. 808+60	Page 14
Figure 3.3:	CPT Probe Pushed into Ground at Hole #2	Page 15
Figure 3.4:	Standard CPT Log for CPT Hole #2 @ Sta. 812+60	Page 15
Figure 3.5:	Standard CPT Log for CPT Hole #3 @ Sta. 816+60	Page 16
Figure 3.6:	General View of Panel S-1 and SW Wingwall	Page 17
Figure 3.7:	General View of Panel S-1	Page 18
Figure 3.8:	General View of Panel S-3	Page 19
Figure 3.9:	General View of Panel S-4	Page 20
Figure 3.10:	General View of Panel S-5	Page 21
Figure 3.11:	Cracked Sidewalk on North Side of E. State St.	Page 22
Figure 3.12:	General View of Panel N-1	Page 23
Figure 3.13:	General View of Panel N-2	Page 24
Figure 3.14:	Signs of Soil Infiltration Between Panels N-2 and N-3	Page 25
Figure 3.15:	General View of Panel N-3	Page 26
Figure 3.16:	Signs of Soil Infiltration Between Panels N-3 and N-4	Page 27
Figure 3.17:	General View of Panel N-4 (Photo A)	Page 28
Figure 3.18:	General View of Panel N-4 (Photo B)	Page 29
Figure 3.19:	General View of Panel N-5 (Photo A)	Page 30

LIST OF FIGURES (cont'd)

Figure 3.20:	General View of Panel N-5 (Photo B)	Page 31
Figure 3.21:	General View of Panel N-5 (Photo C)	Page 32
Figure 3.22:	Signs of Soil Infiltration Between Panel N-5 and NE Wingwall	Page 33
Figure 3.23:	Changes in Tilt Angles vs. Time (North Side)	Page 36
Figure 3.24:	Changes in Tilt Angles vs. Time (South Side)	Page 37
Figure 3.25:	Changes in Rotational Measurements (North Side)	Page 39
Figure 3.26:	Changes in Rotational Measurements (South Side)	Page 40
Figure 3.27:	PVC Pipes Used as Horizontal Drains	Page 42
Figure 3.28:	Horizontal Drain Pipe Installation Process	Page 42
Figure 3.29:	General View of Drain Pipes Installed at Sta. 819+75	Page 43
Figure 3.30:	General View of Finished Drain Pipe Installation Work	Page 43
Figure 3.31:	Reconstruction of Bridge Deck End Section	Page 44
Figure 3.32:	Construction of Sidewalk on North Side of E. State St	Page 44

CHAPTER 1: INTRODUCTION

District 10 personnel of Ohio DOT recently noticed various signs of possible movements on the bridge abutment walls existing under the SR 33 bridge over E. State St. in Athens, Ohio. In this field project, a researcher from the Ohio Research Institute for Transportation and the Environment (ORITE), Ohio University, received a research contract to monitor the performance of the abutment walls at the above site for two years, relying on a modern sensor and visual inspection techniques. The ORITE researcher utilized a highly sensitive tilting measurement system (Digi-Tilt) developed by Slope Indicator (Seattle, WA) to record the rotational movements of each wall panel monthly. This system was used many times in previous research projects and proven to be reliable. In addition, CPT (Cone Penetration Test) sounding was performed at three locations on the Rt. 33 embankment. The CPT sensor readings (tip resistance, sleeve friction, and pore pressure) provided information on the type and quality of soil and the depth to water table that exist behind the north abutment wall. Throughout the duration of the project, ODOT personnel were informed frequently on the status of the abutment wall monitoring program. The data accumulated during the project assisted Ohio DOT District 10 Office to decide the type and extent of the rehabilitation measures appropriate for the site.

Figure 1.1: Project Site Area (SR 33 over E. State St. – Athens)

CHAPTER 2: METHODOLOGY

2.1 PROJECT TASKS

Activities under the research project consisted of the following seven tasks:

Task 1:	Make a reconnaissance trip to the site. Examine the existing site
	conditions and start developing details of the project plan.
Task 2:	Secure supplies.
Task 3:	Perform CPT sounding of embankment soil fill behind Forward Abutment
	Walls, at locations recommended by ODOT District 10.
Task 4:	Establish tilting monitoring stations on the abutment walls.
Task 5:	Perform initial data collection (tilting measurements, initial visual survey).
Task 6:	Continue collecting data once a month.
Task 7:	Prepare and submit a draft final report.

2.2 VISUAL INSPECTIONS

Prior to the installations of the tilting monitoring stations on the wall panels, the ORITE researcher conducted the initial visual inspection of the abutment wall panels. The inspection was conducted to document the location and dimensions of major cracks and other distress conditions that the wall panels were exhibiting in hand sketches and digital photographs. The visual inspection was performed again a mid way through and near the end of the project.

2.3 TILT ANGLE MEASUREMENTS

During the fall of 2004, tilting measurement stations were established at the site. Initial site visit identified a total of five large panels on each side, underneath the northbound and southbound bridges, between the curved wingwalls. One station was set up per wall panel on each side of East State Street. Thus, a total of ten (10) tilt angle measuring stations were established at the site (illustrated in Figure 2.1).

Figure 2.1: Layout and Identifications of Abutment Wall Panels

At each monitoring station, the abutment wall tilting was measured with an accelerometer (Digi-Tilt Tiltmeter by Slope Indicator, Seattle, WA). This system was used many times in previous research projects related to highway bridges and proven to be reliable. The tilt-meter sensor has a range of \pm 30° and a sensitivity of 0.003°. At each monitoring station, two stainless steel reference points will be grouted 2-inch (51 mm) deep into the wall approximately 2.5 ft (0.76 m) apart vertically. To take tilting measurements, a stainless steel ball joint is screwed into each reference point, a reference plate is held against the ball joints, and the accelerometer is positioned on the side of the reference point. Figure 2.2 illustrates the field set-up. Figure 2.3 shows a few components of the system (tilt-meter, cable, and read-out box). Figure 2.4 shows the reference plate attached to one of the abutment walls.

Figure 2.2: Field Set-Up for Abutment Wall Tilt Measurement (1 ft = 0.3 m)

Figure 2.3: Digi-Tilt Sensor and Readout Device

Figure 2.4: Reference Plate Attached to Wall Panel

Each measurement consisted of two readings that were taken on the positive and negative sides of the tilt-meter. Once the positive (+) and negative (-) readings were obtained, the angle of tilt (θ) from the true vertical direction could be calculated by:

$$\theta(rad.) = \sin^{-1} \left[\frac{\left(+ \operatorname{Re} ading \right) - \left(- \operatorname{Re} ading \right)}{40,000} \right]$$
(2.1)

The tilt sensor reading had the following sign convention:

Positive (+) reading ----- Wall is rotating away from the backfill behind it. Negative (-) reading ----- Wall is rotating into the backfill behind it. After taking the readings, the ball joints, the reference plate, and the accelerometer were all removed from the wall. A flat-head bolt was screwed into the reference points to protect their threaded holes.

2.4 FIELD MEASUREMENTS AT TOP OF ABUTMENT WALLS

In addition to the tilt-meter measurements taken in the lower section of each abutment wall panel, a set of manual measurements were taken at the top of the abutment walls. These measurements were possible, because a joint gap existed between two adjacent wall panels and the wall facings were not perfectly aligned at the top of the walls. As illustrated in Figure 2.5, the readings 1 through 8 were used to monitor changes in the joint width between the abutment walls. The readings a through h were used to monitor the rotational movements of the abutment walls (see Figure 2.5). Due to accessibility problem, no measurements were taken at the joints between abutment walls N1 and N2, N4 and N5, S1 and S2, and S4 and S5. These additional field measurements provided indications of possible movements taking place in the upper section of the walls. If the abutment wall moves as one rigid body, there will be a correlation between the tilt-meter readings taken in the lower section and the manual joint measurements taken at the top.

Figure 2.5: Additional Joint Measurements Taken at Top of Walls

Figure 2.6: Taking Joint Measurements at Top of Abutment Wall

2.5 SITE VISITS AND PROJECT COORDINATION

The tilting measurements and the joint measurements at the top of the walls were taken monthly, except during the first 30-day period (in which five sets of readings were recorded). The recording of the readings was continued into the fall of 2006, going through the bridge rehabilitation work (March to Sept. 2006). In addition to monitoring the abutment wall movements, CPT (Cone Penetration Test) sounding was performed at three locations on the Rt. 33 embankment in Oct. 2004. Sensor (tip resistance, sleeve friction, and pore pressure) readings recorded during the CPT sounding provided information on the type and quality of soil that exists behind the north abutment wall. All the data collected at the site were kept in a project binder located in the office of Civil Engineering Dept., Ohio University. ODOT personnel were informed monthly on the status of the abutment wall monitoring program.

2.6 CPT INVESTIGATIONS

Cone penetration test (CPT) is a field test method, in which a 1.75-inch (44.5mm) diameter steel shaft with a 60° conical tip is hydraulically pushed into the ground to collect various subsurface data (see Figure 2.7). This technology, developed originally in Europe, is becoming a premier subsurface exploration method in North America for the fields of geotechnical engineering, earthquake engineering, and environmental engineering.

Figure 2.7: CPT Penetration

The CPT method has a number of advantages over the conventional SPT (standard penetration test) method. The sensors integrated in the CPT probe can provide much higher resolution subsurface data (at least one set of readings per second or 0.8-inch or 20-mm penetration depth). In the data collected during the CPT sounding, drained, partially drained, and undrained penetrations can be easily distinguished. The readings are displayed on the computer screen in real time for instant review. The data are already in the form suitable for plotting and further analysis. The CPT method produces no spoil and thus causes less ground disturbance.

Each CPT sounding results in a standard CPT log. The standard log consists of plots that correlate tip stress, sleeve (friction) stress, friction ratio, and pore water

pressure readings to the penetration depth. The definitions for these CPT-related technical terms are given below:

Tip Stress COR (q_c) = Force acting against the conical tip, divided by the total projected area of the tip and corrected for pore water effect. Measured by strain gages installed on main shaft. See Figure 2.8.

[Note] The correction is required especially for saturated weak clayey soils to make sure that the tip stress is always at least as large as the pore pressure. This measurement may be mainly a reflection of the relative density of the material in front of the tip.

Sleeve Stress (f_s) = Side friction force acting over the sleeve, divided by the total surface area of the sleeve. Measured by strain gages installed on the sleeve. See Figure 2.8.

[Note] Cohesionless soils should exert little side friction force on the sleeve, while a measurable friction force should develop while penetrating through any cohesive soil.

Friction Ratio COR (R) = Ratio of sleeve stress (f_s) divided by the corrected tip stress (q_c).

$$R(\%) = \frac{f_s}{q_c} x_{100}$$
(2.2)

SBT = Standardized (normalized) friction ratio. Based on the following formula:

$$SBT(\%) = \frac{f_s}{q_c - \sigma_{v0}} x100$$
 (2.3)

where σ_{v0} = effective overburden stress.

[Note] The lower this ratio is, more cohesionless (or granular) the soil should be.

Pore Pressure (\mathbf{u}) = Pore water pressure measured by a pressure transducer housed inside the cone assembly. Cavity leading to the transducer is located right behind the conical tip. See Figure 2.8.

[Note] This reading should reflect the hydrostatic pressure (that increases linearly with depth) while penetrating through any permeable zone below the groundwater table. Excess pore pressure, that is much larger than the hydrostatic pressure, tends to develop while penetrating through any zone of low permeability.

Class. \mathbf{FR} = Soil behavioral classification based on a chart published by Robertson (1990) – see Figure 2.9.

[Note] One drawback of the CPT is that it recovers no physical soil samples during the penetration process. Thus, the likely soil type at any penetration depth is estimated by matching the set of collected readings to one of the behavioral patterns exhibited by various soil types.

Figure 2.8: CPT Probe Schematics

Figure 2.9: Soil Behavioral Classification Chart

In the classification chart (Figure 2.9),

- Soil Type 1 = Fine-grained soil, sensitive
- Soil Type 2 = Organic soil (ex. peat)
- Soil Type 3 = Silty clay to clay
- Soil Type 4 = Silt mixture (clayey silt)
- Soil Type 5 = Sand mixture (silty sand, sandy silt)
- Soil Type 6 = Sand (clean sand to silty sand)
- Soil Type 7 = Gravelly sand
- Soil Type 8 = Sand to clayey sand, very stiff
- Soil Type 9 = Fine-grained soil, very stiff

According to Sanglerat (1972), presence of highly compressible (or weak) soil layers is generally marked by low tip resistance stress (q_c) values. A criterion suggested by him for identifying a weak layer is:

$$q_c < 145 \text{ psi} \text{ (or 10 tsf or 10 bars or 1 MPa)}$$
 (2.4)

According to Robertson and Campanella (1988), presence of saturated soil layers may be easily identified during the CPT tests. A saturated layer reads the equilibrium hydrostatic pore water pressure if it is a granular soil layer and relatively high pore water pressure (above the equilibrium hydrostatic pressure) if it is a clayey soil layer.

CHAPTER 3: RESEARCH RESULTS

3.1 CPT SOUNDINGS

The CPT investigations took place on Oct. 20, 2004. A total of four CPT soundings were planned. However, only three of them were completed. Figures 3.1 and 3.3 show color photographs taken during the field work. The following presents the photographs and CPT sounding results as well as brief information on each CPT sounding:

CPT Hole #1: Location = Sta. 808+60 (furthest from the bridge north retaining walls). Color Photograph: See Figure 3.1. CPT Log: Shown in Figure 3.2.

Figure 3.1: CPT Probe Pushed into Ground at Hole #1

[Notes]

- Encountered stiff materials from 0' to 10.0' (0 to 3.1 m) depth.
- Soil (mostly clayey silt) soft and wet from 10.0' to 36.0' (3.1 to 11.0 m) depth.
- Encountered a very stiff layer at 38.0'(11.6 m); started lifting the truck (end of penetration).
- Encountered no apparent water table.

Class FR: Friction Ratio Classification (Ref: Robertson 1990)

Figure 3.2: Standard CPT Log for CPT Hole #1 @ Sta. 808+60

CPT Hole #2: Location = Sta. 812+60 (2^{nd} furthest from the bridge north retaining walls).

Photograph:	See Figure 3.3.
CPT Log:	Shown in Figure 3.4.

Figure 3.3: CPT Probe Pushed into Ground at Hole #2

[Notes]

• Hit a large boulder at 9.7' (3.0 m).

• Managed to reach a depth of 11.5' or 3.5 m (end of penetration).

Test ID: Athens33E

Class FR: Friction Ratio Classification (Ref: Robertson 1990)

Figure 3.4: Standard CPT Log for CPT Hole #2 @ Sta. 812+60

CPT Hole #3: Location = Sta. 816+60 (2nd closest to the bridge north retaining walls). Photograph: None. CPT Log: Shown in Figure 3.5.

- [Notes] Soil soft and wet from 8.0' to 20.0' (2.4 to 6.1 m).
 - Encountered a very stiff layer at 27.0'(8.2 m); started lifting the truck (end of penetration).

Class FR: Friction Ratio Classification (Ref: Robertson 1990)

Figure 3.5: Standard CPT Log for CPT Hole #3 @ Sta. 816+60

CPT Hole #4: Location = Sta. 820+60 (Closet to the bridge north retaining walls).

[Note] • Could not perform the CPT sounding at this location, because the cored hole was too close to the guardrail.

[Note] According to ODOT District 10 personnel, the depth from the top of pavement to the top of original ground (or bottom of the fill) may be about 17 to 19 ft (5.2 to 5.8 m) in Hole #1, 2 to 5 ft (0.6 to 1.5 m) in Hole #2, and 8 to 13 ft (2.4 to 4.0 m) in Hole #3.

3.2 FIELD VISUAL INSPECTIONS

According to the initial site visit, some of the panels had cracks that were slightly wider than hairline cracks. Also, a sign of backfill infiltration existed at some of the panel joints that had opened up slightly. Contrary to the initial speculation, no major horizontal cracks were detected anywhere in the lower half of the walls. Figures 3.6 through 3.22 present digital pictures taken at the project site on Dec. 6, 2004. Most of the panel facing had at least one crack running almost vertically. Signs of soil infiltration were visible at the construction joints between Panels N-2 and N-3, Panels N-3 and N-4, and Panel N-5 and NE Wingwall.

Figure 3.6: General View of Panel S-1 and SW Wingwall

Figure 3.7: General View of Panel S-1

Figure 3.8: General View of Panel S-3

Figure 3.9: General View of Panel S-4

Figure 3.10: General View of Panel S-5

Figure 3.11: Cracked Sidewalk on North Side of E. State St.

Figure 3.12: General View of Panel N-1

Figure 3.13: General View of Panel N-2

Figure 3.14: Signs of Soil Infiltration Between Panels N-2 and N-3

Figure 3.15: General View of Panel N-3

Figure 3.16: Signs of Soil Infiltration Between Panels N-3 and N-4

Figure 3.17: General View of Panel N-4 (Photo A)

Figure 3.18: General View of Panel N-4 (Photo B)

Figure 3.19: General View of Panel N-5 (Photo A)

Figure 3.20: General View of Panel N-5 (Photo B)

Figure 3.21: General View of Panel N-5 (Photo C)

Figure 3.22: Signs of Soil Infiltration Between Panel N-5 and NE Wingwall

The visual inspections conducted on April 25 and August 16, 2006 identified no new cracks on the abutment wall panels at the site. And, those cracked that were detected in the initial period of the project appeared to be unchanged in terms of their length and width dimensions.

3.3 TILT-METER READINGS

The initial tilt-meter readings were taken on Dec. 1, 2004 (the date when the tilting measurement stations were established). Beyond this date, thirty (30) additional sets of the tilting measurements were recorded. Tables 3.1 and 3.2 list all the tilt sensor readings taken during the project. The computed tilt angles are shown in Table 3.3. Figures 3.23 and 3.24 plot the tilt angles versus elapsed time.

	able 5.1. Interfecter Readings Table 10 Not to Figure Multiple Management									
			-	l'ilt-Mete	r Readin	gs for W	all Panel	:	1	
Date	N	[1	N	[2	N	13	N	4	N	15
	+	—	+	—	+	—	+	_	+	_
12-01-04	-215	180	-166	139	-72	37	-69	37	-154	117
12-08-04	-216	183	-167	135	22	-56	-66	36	-151	122
12-10-04	-213	181	-163	131	14	-42	-64	34	-150	123
12-17-04	-233	233	-163	122	8	-50	-72	29	-155	113
12-27-04	-212	232	-164	128	15	-49	-75	37	-156	120
01-07-05	-213	184	-164	133	21	-54	-73	40	-153	121
01-25-05	-208	179	-162	128	NA	NA	-70	36	-153	122
01-30-05	-213	178	-168	135	25	-59	-75	40	-156	122
02-15-05	-214	175	-166	132	23	-58	-73	38	-156	122
03-21-05	-211	180	-164	131	22	-53	-71	39	-154	122
04-19-05	-215	179	-167	129	23	-62	-75	35	-157	121
05-16-05	-210	180	-163	134	24	-55	-70	40	-152	123
06-13-05	-210	177	-160	129	26	-58	-72	40	-155	123
07-07-05	-213	180	-162	128	29	-61	-70	37	-151	121
08-09-05	-208	175	-163	131	27	-61	-69	35	-160	120
09-14-05	-206	184	-160	139	26	-55	-67	40	-149	123
10-19-05	-208	176	-161	127	27	-61	-68	37	-151	120
11-16-05	-209	179	-160	130	26	-62	-69	38	-152	116
12-16-05	-215	176	-163	127	25	-62	-72	33	-154	118
01-20-06	-214	176	-164	132	27	-58	-70	38	-152	122
02-15-06	-212	179	-165	130	23	-58	-74	36	-154	120
03-16-06	-210	178	-161	129	26	-59	-70	36	-154	120
04-03-06	-209	176	-167	132	28	-60	-70	40	-150	121
04-19-06	-206	180	-159	134	29	-56	-68	40	-148	123
05-17-06	-205	181	-158	132	29	-56	-70	45	-147	121
06-12-06	-210	178	-160	130	31	-59	-67	39	-151	118
07-14-06	-204	182	-155	131	33	-56	-61	36	-144	121
08-16-06	-209	176	-158	129	28	-63	-65	28	-148	120
09-19-06	-216	178	-155	124	30	-61	-63	31	-145	114
10-20-06	-210	174	-158	125	29	-63	-65	31	-149	115
11-21-06	-212	173	-161	122	27	-65	-69	28	-152	113

Table 3.1: Tilt-Meter Readings Taken for North Side Abutment Walls

	Tilt-Meter Readings for Wall Panel:									
Date	S	1	S	2	S	3	S	4	S	5
	+	_	+	_	+	_	+	_	+	_
12-01-04	-344	302	-92	53	100	-137	-116	78	-209	172
12-08-04	-246	220	-88	57	99	-132	-118	88	-205	176
12-10-04	-250	218	-89	57	105	-135	-115	84	-208	177
12-17-04	-263	210	-100	57	98	-137	-120	79	-235	172
12-27-04	-254	219	-99	63	98	-134	-120	84	-212	177
01-07-05	-260	226	-99	64	100	-124	-120	85	-219	188
01-25-05	-255	219	-99	64	NA	NA	-118	85	-225	194
01-30-05	-254	215	-102	63	98	-134	-120	86	-212	178
02-15-05	-255	216	-102	64	98	-131	-120	87	-212	176
03-21-05	-249	221	-97	69	101	-130	-118	87	-210	180
04-19-05	-259	212	-105	60	96	-136	-125	85	-218	176
05-16-05	-249	222	-89	66	102	-129	-118	89	-208	180
06-13-05	-240	225	-97	70	109	-128	-120	89	-210	178
07-07-05	-335	299	-98	64	103	-135	-122	90	-213	181
08-09-05	-252	218	-100	63	103	-138	-123	90	-213	181
09-14-05	-265	235	-99	70	107	-134	-119	93	-210	183
10-19-05	-252	222	-90	66	102	-130	-118	88	-210	179
11-16-05	-250	219	-98	63	103	-133	-119	86	-210	177
12-16-05	-252	218	-101	66	99	-135	-120	86	-212	178
01-20-06	-250	220	-100	67	102	-132	-119	89	-210	180
02-15-06	-255	217	-101	66	98	-133	-123	88	-214	177
03-16-06	-250	220	-98	68	102	-130	-120	89	-208	177
04-03-06	-248	218	-100	68	99	-129	-122	92	-204	175
04-19-06	-244	217	-96	68	99	-130	-118	92	-199	174
05-17-06	-245	220	-95	70	106	-129	-114	90	-197	173
06-12-06	-245	214	-95	64	105	-132	-118	87	-199	168
07-14-06	-239	210	-86	57	106	-131	-109	83	-193	167
08-16-06	-246	204	-93	69	98	-139	-111	74	-197	160
09-18-06	-242	209	-88	56	106	-136	-108	78	-194	163
10-20-06	-247	207	-94	53	99	-140	-116	75	-202	161
11-21-06	-250	208	-95	56	100	-138	-116	77	-203	165

 Table 3.2:
 Tilt-Meter Readings Taken for South Side Abutment Walls

 Table 3.3: Tilt Angles of Abutment Wall Panels

		Tilt Angle (deg.) for Wall Panel:								
Date	N1	N2	N3	N4	N5	S 1	S2	S 3	S4	S5
12-01-04	-0.566	-0.437	-0.156	-0.152	-0.388	-0.925	-0.208	0.339	-0.278	-0.546
12-08-04	-0.572	-0.433	0.112	-0.146	-0.391	-0.668	-0.208	0.331	-0.295	-0.546
12-10-04	-0.564	-0.421	0.080	-0.140	-0.391	-0.670	-0.209	0.344	-0.285	-0.552
12-17-04	-0.668	-0.408	0.083	-0.145	-0.384	-0.678	-0.225	0.337	-0.285	-0.583
12-27-04	-0.636	-0.418	0.092	-0.160	-0.395	-0.678	-0.232	0.332	-0.292	-0.557
01-07-05	-0.569	-0.425	0.107	-0.162	-0.392	-0.696	-0.233	0.321	-0.294	-0.583
01-25-05	-0.554	-0.415	NA	-0.152	-0.394	-0.679	-0.233	NA	-0.291	-0.600
01-30-05	-0.560	-0.434	0.120	-0.165	-0.398	-0.672	-0.236	0.332	-0.295	-0.559

02-15-05	-0 557	-0.427	0.116	-0 159	-0 398	-0.675	-0.238	0 328	-0 297	-0 556
02-15-05	0.557	0.127	0.110	0.159	0.395	0.673	0.230	0.320	0.201	0.550
05-21-05	-0.500	-0.425	0.107	-0.138	-0.393	-0.075	-0.238	0.551	-0.294	-0.559
04-19-05	-0.564	-0.424	0.122	-0.158	-0.398	-0.675	-0.237	0.332	-0.301	-0.564
05-16-05	-0.559	-0.425	0.113	-0.158	-0.394	-0.675	-0.222	0.331	-0.297	-0.556
06-13-05	-0.554	-0.414	0.120	-0.160	-0.398	-0.666	-0.239	0.339	-0.299	-0.556
07-07-05	-0.563	-0.415	0.129	-0.153	-0.390	-0.908	-0.232	0.341	-0.304	-0.564
08-09-05	-0.549	-0.421	0.126	-0.149	-0.401	-0.673	-0.233	0.345	-0.305	-0.564
09-14-05	-0.559	-0.428	0.116	-0.153	-0.390	-0.716	-0.242	0.345	-0.304	-0.563
10-19-05	-0.550	-0.413	0.126	-0.150	-0.388	-0.679	-0.223	0.332	-0.295	-0.557
11-16-05	-0.556	-0.415	0.126	-0.153	-0.384	-0.672	-0.231	0.338	-0.294	-0.554
12-16-05	-0.560	-0.415	0.125	-0.150	-0.390	-0.673	-0.239	0.335	-0.295	-0.559
01-20-06	-0.559	-0.424	0.122	-0.155	-0.392	-0.673	-0.239	0.335	-0.298	-0.559
02-15-06	-0.560	-0.423	0.116	-0.158	-0.392	-0.676	-0.239	0.331	-0.302	-0.560
03-16-06	-0.556	-0.415	0.122	-0.152	-0.392	-0.673	-0.238	0.332	-0.299	-0.551
04-03-06	-0.551	-0.428	0.126	-0.158	-0.388	-0.668	-0.241	0.327	-0.307	-0.543
04-19-06	-0.553	-0.420	0.122	-0.155	-0.388	-0.660	-0.235	0.328	-0.301	-0.534
05-17-06	-0.553	-0.415	0.122	-0.165	-0.384	-0.666	-0.236	0.337	-0.292	-0.530
06-12-06	-0.556	-0.415	0.129	-0.152	-0.385	-0.657	-0.228	0.339	-0.294	-0.526
07-14-06	-0.553	-0.410	0.127	-0.139	-0.380	-0.643	-0.205	0.340	-0.275	-0.516
08-16-06	-0.551	-0.411	0.130	-0.133	-0.384	-0.644	-0.232	0.340	-0.265	-0.511
09-18-06	-0.564	-0.400	0.130	-0.135	-0.371	-0.646	-0.206	0.347	-0.266	-0.511
10-20-06	-0.550	-0.405	0.132	-0.138	-0.378	-0.650	-0.211	0.342	-0.274	-0.520
11-21-06	-0.551	-0.405	0.132	-0.139	-0.380	-0.656	-0.216	0.341	-0.276	-0.527

Figure 3.23: Changes in Tilt Angles vs. Time (North Side)

Figure 3.24: Changes in Tilt Angles vs. Time (South Side)

According to these tables and plots, the vertical positions of wall panels N-2, N-4, N-5, S-2, S-3, S-4, and S-5 changed little during the monitoring period (Dec. 2004 to April 2006). Wall Panel N-1 experienced about 0.1° rotation toward the backfill in the second half of December 2004. Since then, it has rotated back close to the original position and remained stable for more than 15 months. Wall Panel N-3 has been stationary, except during December 2004 in which it experienced about 0.2° rotation away from the backfill. Wall Panel S-1 rotated about 0.25° away from the backfill in December 2004. It experienced some movements again in July 2005. Since then, it has changed its position very little.

3.4 MEASUREMENTS TAKEN AT TOP OF ABUTMENT WALLS

The initial rotational measurements were taken at the top of the abutment walls on Dec. 10, 2004 (9 days after the tilting measurement stations were established). Beyond this date, fourteen (14) additional sets of the measurements were recorded. Table 3.4 lists all the measurements taken during the project. The initial measurements of the joint gap

were taken at the top of the abutment walls on July 7, 2004 (about 7 months after the tilting measurement stations were established). Beyond this date, twenty-three (23) additional sets of the measurements were recorded. Table 3.5 lists all the measurements taken during the project. Figures 3.25 and 3.26 plot these measurements versus elapsed time.

	Rotation Measurement (in mm):							
Date	a	b	с	d	e	f	g	h
12-10-04	64	NA	NA	64	76	NA	NA	76
02-15-04	NA	3	3	NA	NA	11	20	NA
03-21-05	71	4	3	71	65	12	20	90
04-19-05	67	3	3	73	61	13	22	87
05-16-05	70	6	5	71	64	14	21	88
06-13-05	70	3	4	74	63	12	20	87
07-07-05	69	3	0	71	59	10	18	86
08-09-05	67	3	0	71	65	11	20	87
09-14-05	68	4	2	74	61	12	18	89
10-19-05	70	5	3	71	62	12	18	87
11-16-05	69	2	0	72	60	11	18	88
12-16-05	69	3	3	72	62	12	19	88
01-20-06	68	4	2	73	63	12	20	87
02-15-06	68	4	3	71	64	14	22	89
03-16-06	68	3	2	70	63	11	21	85
04-03-06	64	3	2	70	62	9	20	86
04-19-06	67	3	0	66	62	12	19	86
05-17-06	67	3	0	68	63	12	21	84
06-12-06	65	4	0	66	59	16	20	82
07-14-06	67	7	6	66	62	13	19	84
08-16-06	63	9	8	65	62	10	19	83
09-19-06	65	10	7	62	60	9	18	82
10-20-06	65	7	7	67	63	9	18	82
11-21-06	67	7	9	66	61	11	19	86

 Table 3.4: Rotation Measurements Taken at Top of Abutment Walls

[Note] Refer to Figure 6 for the locations where these measurements were taken. 1 in = 25 mm.

Table 3.5: Joint Gap Measurements Taken at	Top	of Abutment	Walls
--	-----	-------------	-------

	Joint Gap Measurement (in mm):							
Date	1	2	3	4	5	6	7	8
	No measurements were taken prior to July 2005.							
07-07-05	26	27	25	24	25	29	29	27
08-09-05	27	27	26	25	26	30	29	28

09-14-05	27	27	26	27	26	30	30	29
10-19-05	30	28	28	27	28	31	30	30
11-16-05	29	28	27	27	27	31	31	30
12-16-05	30	29	28	27	29	31	31	30
01-20-06	28	29	28	26	26	30	30	30
02-15-06	28	28	27	25	27	30	30	28
03-16-06	28	28	28	28	27	30	30	30
04-03-06	28	28	27	26	26	30	29	30
04-19-06	28	28	28	27	27	29	30	28
05-17-06	28	29	28	28	28	30	31	30
06-12-06	28	29	27	26	25	30	30	29
07-14-06	27	28	26	25	25	30	29	26
08-16-06	27	27	26	26	25	29	30	28
09-19-06	27	27	27	25	26	28	29	28
10-20-06	28	27	27	27	27	28	30	29
11-21-06	29	30	29	28	28	30	31	30

[Note] Refer to Figure 6 for the locations where these measurements were taken. 1 in = 25 mm

Figure 3.25: Changes in Rotational Measurements (North Side)

Figure 3.26: Changes in Rotational Measurements (South Side)

According to Table 3.4 and Figure 3.25, there might have been some rotational movements on Wall Panels S1, S5, N1, and N5. Table 3.5 and Figure 3.26 show that the joint openings changed very little between July 2005 and April 2006.

3.5 ADDITIONAL PROJECT INFORMATION

In the spring of 2006 the rehabilitation work started at the bridge site in full scale. The ORITE researcher continued to take readings while the rehabilitation project was under way. A conversation with the field ODOT personnel indicated that the rehabilitation work would involve:

- Reconstruction of the 4-ft (1.2-m) section of the bridge deck at both ends so that the deck will become the semi-integrated type (i.e., will be tied to the approach slabs), including slotted drain pipe right next to the top of the abutment wall
- Installation of horizontal drain pipes into the embankment just behind the abutment walls (to drain seepage water)

The deck reconstruction work began from the week of March 10, 2006. The installations of the horizontal drain pipes started at the end of March 2006. Slotted PVC pipes (1.5-inch or 38-mm diameter, schedule 80) were used as the drain pipes. They were inserted into the highway embankment from the west side in sets of three at 50 to 75 ft (15.2 to 22.9 m) spacing (see Table 3.6 for plan details).

Station	No. of Pipes	Elevation at Outlets	Notes
819+00	3	657.85 ft (200.51 m)	North of the bridge structure.
819+75	3	653.42 ft (199.16 m)	North of the bridge structure.
820+25	3	652.91 ft (199.01 m)	North of the bridge structure.
820+75	3	649.65 ft (198.01 m)	Directly north of the north abut- ment wall panels. Pipes drain the area behind Wall Panels N-1 through N-5.
822+25	3	647.60 ft (197.39 m)	Directly south of the south abut- ment wall panels. Pipes drain the area behind Wall Panels S-1 through S-3.
822+75	3	647.16 ft (197.25 m)	South of the bridge structure.

Table 3.6: Horizontal Drain Pipes Installation Plan

At each location, the middle pipe was inserted perpendicularly to the centerline of the roadway, while the other two were inserted at 10° off from the right angle. This arrangement was made to drain a larger area at each station. The slopes of the drain pipes varied from 4 to 6%. Figures 3.27 through 3.31 present photographs of the horizontal drain pipe installation work.

The rehabilitation project was completed during the first week of September 2006. The last action taken by the Contractor was the reconstruction of the sidewalk on the north side of East State Street and installation of drainage channel along the edge where the abutment wall and the new sidewalk meet.

Figure 3.27: PVC Pipes Used as Horizontal Drains

Figure 3.28: Horizontal Drain Pipe Installation Process

Figure 3.29: General View of Drain Pipes Installed at Sta. 819+75

Figure 3.30: General View of Finished Drain Pipe Installation Work

Figure 3.31: Reconstruction of Bridge Deck End Section

Figure 3.32: Construction of Sidewalk on North Side of E. State St.

CHAPTER 4: SUMMARY AND CONCLUSIONS

4.1 **PROJECT SUMMARY**

District 10 personnel of Ohio DOT recently noticed signs of movements on the bridge abutment walls existing under the S.R. 33 bridge over E. State St. in Athens, Ohio. In this research project, the abutment wall panels existing at the bridge site in Athens, Ohio were monitored for possible rotational movements for two years by a researcher from Ohio University. A tilt-meter station was installed in the lower section of each wall panel. A sensitive tilt-meter instrument (Digi-tilt by Slope Indicator, Seattle, WA) was utilized to measure the degree of tilting each wall panel was experiencing over the course of the project. Also, manual measurements were taken at the top of the walls to supply additional data concerning the possible wall movements. As a separate activity, cone penetration test (CPT) sounding was conducted through the highway embankment material, in the vicinity of the bridge structure, to collect detailed information related to the type and quality of soil and the depth to water table that exist behind the north abutment wall.

4.2 CONCLUSIONS

The initial site visit identified a total of ten (10) abutment wall panels – five (5) on each side of East State Street. One or two major cracks were observed running vertically on each panel, and signs of soil infiltration were also noted at some wall joint sections on the north side of East State St. Contrary to the initial speculation, no major horizontal cracks were detected anywhere in the lower half of the walls.

The CPT soundings conducted on Oct. 20, 2004 provided high-resolution information on the subsurface conditions existing within the highway embankment at three locations behind the north abutment walls. Relatively soft and wet soils were encountered in CPT Holes #2 and #3, while silty clay soil in CPT Hole #1 was mostly dry.

45

The tilt-meter readings collected during the project showed that most of the abutment wall panels had remained stable over the two-year period. Only the abutment wall panels N-1, N-3, and S-1 experienced small rotational movements initially. The manual measurements taken at the top of the abutment walls suggested that the abutment wall panels N-1, N-5, S-1, and S-5 might have moved slightly during the initial period. The visual inspections conducted on April 25 and Aug. 16, 2006 identified no new cracks on the abutment wall panels at the site. And, those cracks that were detected in the initial period of the project appeared to be unchanged in terms of their length and width dimensions. These facts along with the tilt-meter and manual measurements that have been accumulated over the past two years point out that these bridge abutment walls have been very stable during the life of the current project (which also included the abutment wall performance in the post-rehabilitation work period).

4.3 **RECOMMENDATIONS**

The site conditions observed during the first year of the current project suggested the following remedial actions to be taken by ODOT: water-proving the abutment wall front faces; complete reconstruction of the end sections of the bridge deck; installation of upgraded drainage system under each end section of the bridge deck; complete reconstruction of the sidewalk on the north side of East State Street; installation of drain gutter along the edge of the sidewalk on the north side of East State Street; and filling of the joint gaps existing between abutment wall panels. Most of these remedial actions were taken during the actual rehabilitation project, which lasted from March to September of 2006.

CHAPTER 5: IMPLEMENTATIONS

Based on the site conditions observed, the rehabilitation work being completed, and the data collected during the current project at the SR 33 bridge over E. State St. in Athens, Ohio, the following implementation plans are recommended by the author:

- There is no need to perform major reconstruction or rehabilitation work on the abutment walls. The tilt-meter readings compiled over two-year period indicated that the walls had been stable throughout all four seasons and inclement weather conditions quite some time.
- Additional horizontal drains may need to be integrated into the existing embankment structure. The horizontal drains installed during the summer of 2006 appear to have very limited capability to drain the embankment soils.
- The gap existing between the wall panels should be filled with suitable durable joint material to prevent further loss of backfill soil.
- There will be no need to keep monitoring the movements of the abutment walls with tilt-meter system in the future. The bridge and wall structures should be inspected occasionally by the ODOT District personnel. The sensor monitoring should be resurrected only if additional signs of possible wall movements are detected.

REFERENCES

Masada, T. (2006). Course Notebook for CE 853 (Environmental Geotechnology II), Grade-A-Notes, Athens, OH.

Robertson, P. K., and Campanella, R. G. (1988). "Guidelines for Using CPT, CPTU, and Marchetti DMT for Geotechnical Design: Volume II – Using CPT and CPTU Data." FHWA-PA-87-023+84-24, Final Report to the Penn DOT and U.S. Dept. of Transportation, Civil Engineering Dept., University of British Columbia, Canada, 235 pp.

Sanglerat, G. (1972). *The Penetrometer and Soil Exploration*, Elsevier Publishing Co., Amsterdam, 464 pp.

Slope Indicator, Inc. (2003). Portable Digitilt Tiltmeter, User's Manual, Washington, U.S.

